Single-index copulas

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian Process Single Index Models for Conditional Copulas

Parametric conditional copula models allow the copula parameters to vary with a set of covariates according to an unknown calibration function. In this paper we develop a flexible Bayesian method to estimate the calibration function of a bivariate conditional copula. We construct a prior distribution over the set of smooth calibration functions using a sparse Gaussian process (GP) prior for the...

متن کامل

Bayesian inference for conditional copulas using Gaussian Process single index models

Parametric conditional copulamodels allow the copula parameters to vary with a set of covariates according to an unknown calibration function. Flexible Bayesian inference for the calibration function of a bivariate conditional copula is introduced. The prior distribution over the set of smooth calibration functions is built using a sparse Gaussian process (GP) prior for the single index model (...

متن کامل

On Generators in Archimedean Copulas

This study after reviewing  construction methods of generators in Archimedean copulas (AC),  proposes several useful lemmas related with generators of AC. Then a new trigonometric Archimedean family will be shown which is based on cotangent function. The generated new family is able to model the low dependence structures.

متن کامل

Sparse single-index model

Let (X, Y ) be a random pair taking values in Rp × R. In the socalled single-index model, one has Y = f?(θ?TX) + W , where f? is an unknown univariate measurable function, θ? is an unknown vector in Rd, and W denotes a random noise satisfying E[W |X] = 0. The single-index model is known to offer a flexible way to model a variety of high-dimensional real-world phenomena. However, despite its rel...

متن کامل

Single-index model selections

We derive a new model selection criterion for single-index models, AICC , by minimizing the expected Kullback-Leibler distance between the true and candidate models. The proposed criterion selects not only relevant variables but also the smoothing parameter for an unknown link function. Thus, it is a general selection criterion that provides a uniÞed approach to model selection across both para...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2018

ISSN: 0047-259X

DOI: 10.1016/j.jmva.2017.11.004